Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity

Author:

Dunne Colum12,Crowley Jer J.2,Moënne-Loccoz Yvan,Dowling David N.2,Bruijn s1,O'Gara Fergal2

Affiliation:

1. MSU-DOE Plant Research Laboratory and Department of Microbiology, Michigan State University, East Lansing, Ml 48824, USA

2. Department of Microbiology, University College Cork, Cork, Ireland

Abstract

Stenotrophomonas maltophilia strain W81, isolated from the rhizosphere of field-grown sugar beet, produced the extracellular enzymes chitinase and protease and inhibited the growth of the phytopathogenic fungus Pythium ultimum in vitro. The role of these lytic enzymes in the interaction between W81 and P. ultimum was investigated using Tn5 insertion mutants of W81 incapable of producing extracellular protease (W81M1), extracellular chitinase (W81M2) or the two enzymes (W81A1). Lytic enzyme activity was restored in W81A1 following introduction of a 15 kb cosmid-borne fragment of W81 genomic DNA. Incubation of P. ultimum in the presence of commercial purified protease or cell-free supernatants from cultures of wild-type W81, the chitinase-negative mutant W81M2 or the complemented derivative W81A1 (pCU800) resulted in hyphal lysis and loss of subsequent fungal growth ability once re-inoculated onto fresh plates. In contrast, commercial purified chitinase or cell-free supernatants from cultures of the protease-negative mutant WS1M1 or the chitinase- and protease-negative mutant W81A1 had no effect on integrity of the essentially chitin-free Pythium mycelium, and did not prevent subsequent growth of the fungus. In soil microcosms containing soil naturally infested by Pythium spp., strains W81, W81M2 and W81A1(pCU800) reduced the ability of Pythium spp. to colonize the seeds of sugar beet and improved plant emergence compared with the untreated control, whereas W81A1 and W21M1 failed to protect sugar beet from damping-off. Wild-type W81 and its mutant derivatives colonized the rhizosphere of sugar beet to similar extents, it was concluded that the ability of S. maltophilia W81 to protect sugar beet from Pythium -mediated damping-off was due to the production of an extracellular protease.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3