Biosynthesis of triacylglycerol in the filamentous fungus Mucor circinelloides

Author:

Jackson Frances M.1,Michaelson Louise1,Fraser Thomas C. M1,Stobart A. Keith1,Griffiths Gareth2

Affiliation:

1. School of Biological Sciences, University of BristolWoodland Road, Bristol BS8 1UGUK

2. Department of Plant Genetics and Biotechnology, Horticulture Research InternationalWellesbourne, Warwickshire CV35 9EFUK

Abstract

Lipid metabolism was studied in 2-d-old liquid cultures of Mucor circinelloides grown at 25 C. Under these conditions, oil accumulated to 0.5 g I-1 with a ?-linolenic acid content (?18:3) of 60 mg I-1. The major labelled lipids in cultures incubated with [14C]acetate were triacylglycerol (TAG), phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The proportion of label declined in the phospholipids and increased in TAG with time. [14C]18:1 and [14C]18:2 rapidly appeared in PC and PE and later accumulated in [14C]?18:3. TAG-synthesizing capacity was greatest in the microsomal membrane fraction, which accumulated high levels of phosphatidic acid in the presence of glycerol 3-phosphate and acyl-CoA substrates at pH 7.0. Further metabolism of phosphatidic acid to diacylglycerol and TAG was achieved by increasing the pH to 8.0. Lysophosphatidic acid:acyl-CoA acyltransferase (LPAAT) activity was particularly high and may have accounted for the rapid accumulation of phosphatidic acid in the membranes. The glycerol-3-phosphate:acyl-CoA acyltransferase (GPAAT) and LPAAT were non-specific for a range of saturated and unsaturated species of acyl-CoA although the GPAAT showed a marked selectivity for palmitoyl-CoA and the LPAAT for oleoyl- and linoleoyl-CoA. ?-Linolenic acid was detected at all three positions of sn-TAG and was particularly enriched at the sn-3 position. The preparation of active in vitro systems (microsomal membranes) capable of the complete biosynthetic pathway for TAG assembly may be valuable in understanding the assembly of oils in future transgenic applications.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3