Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis

Author:

Winzer Klaus1,Lorenz Karin1,DÜrre Peter1

Affiliation:

1. Angewandte Mikrobiologie und Mykoiogie, UniversitätUlm, D-89069 Ulm, Germany

Abstract

Acetate kinase (ATP:phosphotransferase, EC 2.7.2.1) has been purified 294-fold from acid-producing cells of Clostridium acetobutylicum DSM 1731 to a specific activity of 1087 U mg−1 (ADP-forming direction). The dimeric enzyme consisted of subunits with a molecular mass of 43 kDa. The molecular mass of the native acetate kinase was in the range 87-94 kDa as judged by gel filtration and native gel electrophoresis. The enzyme showed high specificity for the substrates acetate and ATP, and maximal activity was obtained with Mn2+ as divalent cation. The presence of mercury compounds such as HgCl2 and p-hydroxymercuribenzoate resulted in an essential loss of activity. The apparent K m values for acetate, Mg-ATP, acetyl phosphate, and Mg-ADP were 73, 0.37, 0.58 and 0.71 mM. An activity-staining procedure for detection of acetate kinase in crude cell extracts after separation on native polyacrylamide gels was developed. A DNA fragment encoding 246 bp of the acetate kinase gene of C. acetobutylicum DSM 792 was cloned by a PCR-based approach. Northern blot analysis revealed transcription of the gene under acid- and solvent-producing conditions with no significant differences at the level of transcription.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3