Recombinant SINAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro

Author:

Ekong Theresa A. N1,Feavers Ian M.1,Sesardic Dorothea1

Affiliation:

1. Division of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK

Abstract

Bacterial neurotoxins are now being used routinely for the treatment of neuromuscular conditions. Alternative assays to replace or to complement in vivo bioassay methods for assessment of the safety and potency of these botulinum neurotoxin-based therapeutic products are urgently needed. Advances made in understanding the mode of action of clostridial neurotoxins have provided the basis for the development of alternative mechanism-based assay methods. Thus, the identification of SNAP-25 (synaptosomal-associated protein of molecular mass 25 kDa) as the intracellular protein target which is selectively cleaved during poisoning by botulinum neurotoxin type A (BoNT/A) has enabled the development of a functional in vitro assay for this toxin. Using recombinant DNA methods, a segment of SNAP-25 (aa residues 134-206) spanning the toxin cleavage site was prepared as a fusion protein to the maltose-binding protein in Escherichia coli. The fusion protein was purified by affinity chromatography and the fragment isolated after cleavage with Factor Xa. Targeted antibodies specific for the N and C termini of SNAP-25, as well as the toxin cleavage site, were prepared and used in an immunoassay to demonstrate BoNT/A endopeptidase activity towards recombinant SNAP-25 substrates. The reaction required low concentrations of reducing agents which were inhibitory at higher concentrations as were metal chelators and some inhibitors of metallopeptidases. The endopeptidase assay has proved to be more sensitive than the mouse bioassay for detection of toxin in therapeutic preparations. A good correlation with results obtained in the in vivo bioassay (r = 0·95, n = 23) was demonstrated. The endopeptidase assay described here may provide a suitable replacement assay for the estimation of the potency of type A toxin in therapeutic preparations.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3