Affiliation:
1. Department of Microbiology and Immunology, Health Sciences Addition HSA320, The University of Western Ontario, London, ON N6A 5C1, Canada
Abstract
The human cytomegalovirus (CMV) US2–US11 genomic region contains a cluster of genes whose products interfere with antigen presentation by the major histocompatibility complex (MHC) proteins. Although included in this cluster, the US9 gene encodes a glycoprotein that does not affect MHC activity and whose function is still largely uncharacterized. An in silico analysis of the US9 amino-acid sequence uncovered the presence of an N-terminal signal sequence (SS) and a C-terminal transmembrane domain containing the specific hallmarks of known mitochondrial localization sequences (MLS). Expression of full-length US9 and of US9 deletion mutants fused to GFP revealed that the N-terminal SS mediates US9 targeting to the endoplasmic reticulum (ER) and that the C-terminal MLS is both necessary and sufficient to direct US9 to mitochondria in the absence of a functional SS. This dual localization suggested a possible role for US9 in protection from apoptosis triggered by ER-to-mitochondria signalling. Fibroblasts infected with the US2–US11 deletion mutant virus RV798 or with the parental strain AD169varATCC were equally susceptible to death triggered by exposure to tumour necrosis factor (TNF)-α, tunicamycin, thapsigargin, brefeldin A, lonidamine and carbonyl cyanide m-chloro phenyl hydrazone, but were 1.6-fold more sensitive to apoptosis induced by hygromycin B. Expression of US9 in human embryonic kidney 293T cells or in fibroblasts, however, did not protect cells from hygromycin B-mediated death. Together, these results classify US9 as the first CMV-encoded protein to contain an N-terminal SS and a C-terminal MLS, and suggest a completely novel role for this protein during infection.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献