Asymptomatically shed recombinant herpes simplex virus type 1 strains detected in saliva

Author:

Liljeqvist Jan Åke1,Tunbäck Petra2,Norberg Peter1

Affiliation:

1. Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden

2. Department of Dermatovenereology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden

Abstract

Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen infecting most individuals worldwide. The majority of HSV-1-infected individuals have no clinical symptoms but shed HSV-1 asymptomatically in saliva. Recent phylogenetic analyses of HSV-1 have defined three genetic clades (A–C) and recombinants thereof. These data have all been based on clinical HSV-1 isolates and do not cover genetic variation of asymptomatically shed HSV-1. The primary goal of this study was to investigate such variation. A total of 648 consecutive saliva samples from five HSV-1-infected volunteers was collected. Asymptomatic shedding was detected on 7.6 % of the days from four subjects. The HSV-1 genome loads were quantified with real-time PCR and varied from 1×102to 2.8×106 copies of virus DNA (ml saliva)−1. Phylogenetic network analyses and bootscanning were performed on asymptomatically shed HSV-1. The analyses were based on DNA sequencing of the glycoprotein I gene, and also of the glycoprotein E gene for putative recombinants. For two individuals with clinical HSV-1 infection, the same HSV-1 strain was shed asymptomatically as induced clinical lesions, and sequence analyses revealed that these strains clustered distinctly to clades A and B, respectively. For one of the subjects with no clinical HSV-1 infection, a recombinant strain was identified. The other truly asymptomatic individual shed evolutionarily distinct HSV-1 strains on two occasions. The first strain was classified as a recombinant and the other strain clustered in clade A. High replication rates of different strains in the same person may facilitate the creation of recombinant clinical HSV-1 strains.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3