Identification and characterization of two CRISPR/Cas systems associated with the mosquito microbiome

Author:

Hegde Shivanand12ORCID,Rauch Hallie E.3,Hughes Grant L.1ORCID,Shariat Nikki4ORCID

Affiliation:

1. Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Centre for Neglected Tropical Disease, Liverpool, UK

2. Present address: School of Life Sciences, University of Keele, Newcastle, UK

3. Department of Biology, Gettysburg College, Gettysburg, PA, USA

4. Department of Population Health, University of Georgia, Athens, GA, USA

Abstract

The microbiome profoundly influences many traits in medically relevant vectors such as mosquitoes, and a greater functional understanding of host–microbe interactions may be exploited for novel microbial-based approaches to control mosquito-borne disease. Here, we characterized two novel clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems in Serratia sp. Ag1, which was isolated from the gut of an Anopheles gambiae mosquito. Two distinct CRISPR/Cas systems were identified in Serratia Ag1, CRISPR1 and CRISPR2. Based on cas gene composition, CRISPR1 is classified as a type I-E CRISPR/Cas system and has a single array, CRISPR1. CRISPR2 is a type I-F system with two arrays, CRISPR2.1 and CRISPR2.2. RT-PCR analyses show that all cas genes from both systems are expressed during logarithmic growth in culture media. The direct repeat sequences of CRISPRs 2.1 and 2.2 are identical and found in the arrays of other Serratia spp., including S. marcescens and S. fonticola , whereas CRISPR1 is not. We searched for potential spacer targets and revealed an interesting difference between the two systems: only 9 % of CRISPR1 (type I-E) targets are in phage sequences and 91 % are in plasmid sequences. Conversely, ~66 % of CRISPR2 (type I-F) targets are found within phage genomes. Our results highlight the presence of CRISPR loci in gut-associated bacteria of mosquitoes and indicate interplay between symbionts and invasive mobile genetic elements over evolutionary time.

Funder

Royal Society

Biotechnology and Biological Sciences Research Council

UK Research and Innovation

Engineering and Physical Sciences Research Council

National Institute for Health Research Health Protection Research Unit

Bill and Melinda Gates Foundation

Liverpool School of Tropical Medicine

Publisher

Microbiology Society

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3