Investigating the impact of temperature on growth rate of the root rot fungus, Gymnopus fusipes

Author:

Pettifor Bethany J.12ORCID,Kajamuhan Anparasy3,Denman Sandra3ORCID,McDonald James E.21ORCID

Affiliation:

1. School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK

2. Present address: Birmingham Institute of Forest Research, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK

3. Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK

Abstract

Gymnopus fusipes is an understudied root rot pathogen associated with multiple tree species and is linked to episodes of oak decline across the United Kingdom and Europe. Although the reported distribution of G. fusipes is broad, many observations rely solely on visual identification of fruiting bodies, which can be unreliable, and lack confirmation by molecular and/or isolation data to verify this broad ecological range. Given the paucity of information regarding the true ecological distribution of G. fusipes, it is difficult to predict and model the potential distribution of the species under both current and future climate scenarios. In this study, to determine the growth capabilities of G. fusipes across a range of ecologically relevant temperatures, five geographically diverse isolates of G. fusipes were grown at five different temperatures ranging from 4–37°C, to determine the optimal temperature for G. fusipes growth, and to establish whether geographically diverse isolates exhibit local adaptation to temperature tolerance. Incubation temperature had a significant effect on G. fusipes growth rate, with 25°C representing the optimum (P<0.001). Isolates had differing growth rates at each of the temperatures, with an isolate from the UK having the highest overall growth rate across all five temperatures tested (P<0.001), and at the optimum, increased by a mean value of over 4915 mm2. Local adaptation to temperature tolerance was not found in the isolates tested. These data demonstrate the optimal incubation temperature for future laboratory studies on G. fusipes and provide the first data on the growth rate of this pathogen across ecologically relevant climate ranges that may inform land managers, modellers, and policy makers in predicting the current and potentially future geographical limits of this widespread root rot pathogen.

Funder

Department for Environment, Food and Rural Affairs, UK Government

Publisher

Microbiology Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3