Relation between two evolutionary clocks reveal new insights in bacterial evolution

Author:

Sevillya Gur1ORCID

Affiliation:

1. Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel

Abstract

New insights in evolution are available thanks to next-generation sequencing technologies in recent years. However, due to the network of complex relations between species, caused by the intensive horizontal gene transfer (HGT) between different bacterial species, it is difficult to discover bacterial evolution. This difficulty leads to new research in the field of phylogeny, including the gene-based phylogeny, in contrast to sequence-based phylogeny. In previous articles, we presented evolutionary insights of Synteny Index (SI) study on a large biological dataset. We showed that the SI approach naturally clusters 1133 species into 39 cliques of closely related species. In addition, we presented a model that enables calculation of the number of translocation events between genomes based on their SI distance. Here, these two studies are combined together and lead to new insights. A principal result is the relation between two evolutionary clocks: the well-known sequence-based clock influenced by point mutations, and SI distance clock influenced by translocation events. A surprising linear relation between these two evolutionary clocks rising for closely related species across all genus. In other words, these two different clocks are ticking at the same rate inside the genus level. Conversely, a phase-transition manner discovered between these two clocks across non-closely related species. This may suggest a new genus definition based on an analytic approach, since the phase-transition occurs where each gene, on average, undergoes one translocation event. In addition, rare cases of HGT among highly conserved genes can be detected as outliers from the phase-transition pattern.

Publisher

Microbiology Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3