Genomic investigation of the emergence of vanD vancomycin-resistant Enterococcus faecium

Author:

Baines Sarah L.1ORCID,Guérillot Romain1ORCID,Ballard Susan2ORCID,Johnson Paul D. R.3,Stinear Timothy P.1ORCID,Roberts Sally4ORCID,Howden Benjamin P.21ORCID

Affiliation:

1. Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia

2. Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia

3. Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia

4. Department of Microbiology, LabPlus, Auckland City Hospital, Auckland, New Zealand

Abstract

Vancomycin-resistant Enterococcus (VRE) is an increasingly identified cause of human disease, with most infections resulting from the vanA and vanB genotypes; less is known about other clinically relevant genotypes. Here we report a genomic exploration of a vanD VRE faecium (VREfm), which arose de novo during a single infectious episode. The genomes of the vancomycin-susceptible E. faecium (VSEfm) recipient and resulting VREfm were subjected to long-read sequencing and closed, with whole-genome alignments, cross-mapping and orthologue clustering used to identify genomic variation. Three key differences were identified. (i) The VREfm chromosome gained a 142.6 kb integrative conjugative element (ICE) harbouring the vanD locus. (ii) The native ligase (ddl) was disrupted by an ISEfm1 insertion. (iii) A large 1.74 Mb chromosomal inversion of unknown consequence occurred. Alignment and phylogenetic-based comparisons of the VREfm with a global collection of vanD-harbouring genomes identified strong similarities in the 120–160 kb genomic region surrounding vanD, suggestive of a common mobile element and integration site, irrespective of the diverse taxonomic, geographical and host origins of the isolates. This isolate diversity revealed that this putative ICE (and its source) is globally disseminated and is capable of being acquired by different genera. Although the incidence of vanD VREfm is low, understanding its emergence and potential for spread is crucial for the ongoing efforts to reduce antimicrobial resistance.

Publisher

Microbiology Society

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3