An initial genomic blueprint of the healthy human oesophageal microbiome

Author:

Gilroy Rachel1ORCID,Adam Mina E.23,Kumar Bhaskar23ORCID,Pallen Mark J.214ORCID

Affiliation:

1. Quadram Institute Bioscience, Norwich Research Park, Norwich, UK

2. School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK

3. Norfolk & Norwich University Hospitals NHS Foundation Trust, Norwich, UK

4. University of East Anglia, Norwich Research Park, Norwich, UK

Abstract

Background. The oesophageal microbiome is thought to contribute to the pathogenesis of oesophageal cancer. However, investigations using culture and molecular barcodes have provided only a low-resolution view of this important microbial community. We therefore explored the potential of culturomics and metagenomic binning to generate a catalogue of reference genomes from the healthy human oesophageal microbiome, alongside a comparison set from saliva. Results. Twenty-two distinct colonial morphotypes from healthy oesophageal samples were genome-sequenced. These fell into twelve species clusters, eleven of which represented previously defined species. Two isolates belonged to a novel species, which we have named Rothia gullae. We performed metagenomic binning of reads generated from UK samples from this study alongside reads generated from Australian samples in a recent study. Metagenomic binning generated 136 medium or high-quality metagenome-assembled genomes (MAGs). MAGs were assigned to 56 species clusters, eight representing novel Candidatus species, which we have named Ca. Granulicatella gullae, Ca. Streptococcus gullae, Ca. Nanosynbacter quadramensis, Ca. Nanosynbacter gullae, Ca. Nanosynbacter colneyensis, Ca. Nanosynbacter norwichensis, Ca. Nanosynococcus oralis and Ca. Haemophilus gullae. Five of these novel species belong to the recently described phylum Patescibacteria . Although members of the Patescibacteria are known to inhabit the oral cavity, this is the first report of their presence in the oesophagus. Eighteen of the metagenomic species were, until recently, identified only by hard-to-remember alphanumeric placeholder designations. Here we illustrate the utility of a set of recently published arbitrary Latinate species names in providing user-friendly taxonomic labels for microbiome analyses. Our non-redundant species catalogue contained 63 species derived from cultured isolates or MAGs. Mapping revealed that these species account for around half of the sequences in the oesophageal and saliva metagenomes. Although no species was present in all oesophageal samples, 60 species occurred in at least one oesophageal metagenome from either study, with 50 identified in both cohorts. Conclusions. Recovery of genomes and discovery of new species represents an important step forward in our understanding of the oesophageal microbiome. The genes and genomes that we have released into the public domain will provide a base line for future comparative, mechanistic and intervention studies.

Funder

Biotechnology and Biological Sciences Research Council

Medical Research Council

Publisher

Microbiology Society

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3