Group A streptococcus isolated in Guyana with reduced susceptibility to β-lactam antibiotics

Author:

Kalladeen Melissa1,Cheddie Paul2ORCID,Akpaka Patrick Eberechi1ORCID

Affiliation:

1. Department of Paraclinical Sciences, University of the West Indies, St Augustine, Trinidad and Tobago

2. Department of Medical Laboratory Science, University of Guyana, Turkeyen, Guyana

Abstract

Introduction. Streptococcus pyogenes [group A streptococci (GAS)] is the causative agent of pharyngitis and various other syndromes involving cellulitis, streptococcal toxic shock syndrome (STSS), and necrotising fasciitis. Although the prevalence of GAS infections globally remains high, necessitating the widespread use of β-lactam antibiotics, GAS have remained largely susceptible to these agents. However, there have been several reports of GAS with reduced susceptibility harbouring mutations in genes for penicillin-binding proteins (PBPs). The objectives of this study were to examine the in vitro β-lactam susceptibility patterns of group A streptococci, determine the prevalence of drug resistance, and ascertain whether such resistance could be attributed to mutations in specific PBP genes. Methods. In this study, we sought to use Sanger sequencing to identify mutations in PBP genes of Streptococcus pyogenes isolated from patients that required inpatient and outpatient care that could confer reduced PBP affinity for penicillin and/or cephalosporin antibiotics. All isolates were screened for susceptibility to penicillin, amoxicillin, and cefazolin using E-test strips. Results. While there were no documented cases of reduced susceptibility to penicillin or amoxicillin, 13 isolates had reduced susceptibility to cefazolin. Examination of pbp1a by Sanger sequencing revealed several isolates with single amino acid substitutions, which could potentially reduce the affinity of PBP 1A for cefazolin and possibly other first-generation cephalosporins. Conclusion. Penicillin and penicillin-derived antibiotics remain effective treatment options for GAS infections, but active surveillance is needed to monitor for changes to susceptibility patterns against these and other antibiotics and understand the genetic mechanisms contributing to them.

Publisher

Microbiology Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3