Impact of inoculum density of Fusarium oxysporum f. sp. zingiberi on symptomatic appearances and yield of ginger (Zingiber officinale Roscoe)

Author:

Matthews Andrea1ORCID,Muthukumar Sharan P. T.1ORCID,Hamill Sharon2ORCID,Aitken Elizabeth A. B.1ORCID,Chen Andrew1ORCID

Affiliation:

1. School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4067, Australia

2. Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, QLD 4560, Australia

Abstract

Ginger (Zingiber officinale Roscoe) is an important horticultural crop valued for its medicinal and culinary properties. Fusarium yellows, caused by the ascomycete fungus Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating soil-borne disease of ginger. It has curtailed ginger production in Australia and around the world, leading to significant economic losses. An integrated approach is required to manage soil-borne diseases such as those caused by Foz. However, little is known about the influence of Foz inoculum on disease severity. This study aimed to establish a minimum threshold level of spores per gram of soil required for plant infection and to develop and evaluate a pot inoculation method for screening large numbers of plants in a controlled environment. To achieve this, the dominant Australian ginger cultivar Canton was inoculated with 101, 103, 105, 106 and 107 microconidia g−1 soil. The inoculum density was positively associated with leaf and stem yellows, and rhizome discolouration, and negatively associated with root length and rhizome weight. The lowest threshold required for plant infection was 101 microconidia g−1 soil, which may provide an important basis for outbreaks of Foz in the field. This finding adds significantly to our knowledge of the impact of soil health on ginger production, thereby contributing to the integrated management of Foz. When used at a high dose, this method can facilitate reliable and accurate screening of Foz-susceptible ginger genotypes in a controlled environment.

Funder

School of Agriculture and Food Sciences, University of Queensland

Publisher

Microbiology Society

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3