Affiliation:
1. School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4067, Australia
2. Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, QLD 4560, Australia
Abstract
Ginger (Zingiber officinale Roscoe) is an important horticultural crop valued for its medicinal and culinary properties. Fusarium yellows, caused by the ascomycete fungus Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating soil-borne disease of ginger. It has curtailed ginger production in Australia and around the world, leading to significant economic losses. An integrated approach is required to manage soil-borne diseases such as those caused by Foz. However, little is known about the influence of Foz inoculum on disease severity. This study aimed to establish a minimum threshold level of spores per gram of soil required for plant infection and to develop and evaluate a pot inoculation method for screening large numbers of plants in a controlled environment. To achieve this, the dominant Australian ginger cultivar Canton was inoculated with 101, 103, 105, 106 and 107 microconidia g−1 soil. The inoculum density was positively associated with leaf and stem yellows, and rhizome discolouration, and negatively associated with root length and rhizome weight. The lowest threshold required for plant infection was 101 microconidia g−1 soil, which may provide an important basis for outbreaks of Foz in the field. This finding adds significantly to our knowledge of the impact of soil health on ginger production, thereby contributing to the integrated management of Foz. When used at a high dose, this method can facilitate reliable and accurate screening of Foz-susceptible ginger genotypes in a controlled environment.
Funder
School of Agriculture and Food Sciences, University of Queensland
Subject
Microbiology (medical),Microbiology