Rare earth ions block the ion pores generated by the class II fusion proteins of alphaviruses and allow analysis of the biological functions of these pores

Author:

Koschinski Andreas1,Wengler Gerd2,Wengler Gisela2,Repp Holger1

Affiliation:

1. Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität, D-35392 Giessen, Germany

2. Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität, D-35392 Giessen, Germany

Abstract

Recently, class II fusion proteins have been identified on the surface of alpha- and flaviviruses. These proteins have two functions besides membrane fusion: they generate an isometric lattice on the viral surface and they form ion-permeable pores at low pH. An attempt was made to identify inhibitors for the ion pores generated by the fusion proteins of the alphaviruses Semliki Forest virus and Sindbis virus. These pores can be detected and analysed in three situations: (i) in the target membrane during virus entry, by performing patch-clamp measurements of membrane currents; (ii) in the virus particle, by studying the entry of propidium iodide; and (iii) in the plasma membrane of infected cells, by Fura-2 fluorescence imaging of Ca2+ entry into infected cells. It is shown here that, at a concentration of 0·1 mM, rare earth ions block the ion permeability of alphavirus ion pores in all three situations. Even at a concentration of 0·5 mM, these ions do not block formation of the viral fusion pore, as they do not inhibit entry or multiplication of alphaviruses. The data indicate that ions flow through the ion pores into the virus particle in the endosome and from the endosome into the cytoplasm after fusion of the viral envelope with the endosomal membrane. These ion flows, however, are not necessary for productive infection. The possibility that the ability of class II fusion proteins to form ion-permeable pores reflects their origin from protein toxins that form ion-permeable pores, and that entry via class II fusion proteins may resemble the entry of non-enveloped viruses, is discussed.

Publisher

Microbiology Society

Subject

Virology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3