A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)HXB2 Rev/Env or codon-optimized HIV-1JR-FL gp120 generates durable immune responses in mice

Author:

Buffa Viviana1,Negri Donatella R. M.1,Leone Pasqualina1,Bona Roberta1,Borghi Martina1,Bacigalupo Ilaria1,Carlei Davide1,Sgadari Cecilia1,Ensoli Barbara1,Cara Andrea1

Affiliation:

1. National AIDS Center, Department of Drugs and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy

Abstract

Genetic immunization using viral vectors provides an effective means to elicit antigen-specific cellular immune responses. Several viral vectors have proven efficacious in inducing immune responses after direct injection in vivo. Among them, recombinant, self-inactivating lentiviral vectors are very attractive delivery systems, as they are able to efficiently transduce into and express foreign genes in a wide variety of mammalian cells. A self-inactivating lentiviral vector was evaluated for the delivery of human immunodeficiency virus 1 (HIV-1) envelope sequences in mice in order to elicit specific immune responses. With this aim, BALB/c mice were immunized with a single injection of self-inactivating lentiviral vectors carrying either the full-length HIV-1HXB2 Rev/Env (TY2-IIIBEnv) or the codon-optimized HIV-1JR-FL gp120 (TY2-JREnv) coding sequence. Both vectors were able to elicit specific cellular responses efficiently, as measured by gamma interferon ELISPOT and chromium-release assays, upon in vitro stimulation of splenocytes from BALB/c immunized mice. However, only the TY2-JREnv-immunized mice were able to elicit specific humoral responses, measured as anti-gp120 antibody production. These data provide the first evidence that a single, direct, in vivo administration of a lentiviral vector encoding a viral gene might represent a useful strategy for vaccine development.

Publisher

Microbiology Society

Subject

Virology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3