Avipoxvirus phylogenetics: identification of a PCR length polymorphism that discriminates between the two major clades

Author:

Jarmin Susan1,Manvell Ruth2,Gough Richard E.2,Laidlaw Stephen M.1,Skinner Michael A.1

Affiliation:

1. Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK

2. Veterinary Laboratory Agency, New Haw, Addlestone, Surrey KT15 3NB, UK

Abstract

Avipoxvirus infections have been observed in an extensive range of wild, captive and domesticated avian hosts, yet little is known about the genome diversity and host-range specificity of the causative agent(s). Genome-sequence data are largely restricted to Fowlpox virus (FWPV) and Canarypox virus (CNPV), which have been sequenced completely, showing considerable divergence between them. It is therefore proving difficult, by empirical approaches, to identify pan-genus, avipoxvirus-specific oligonucleotide probes for PCR and sequencing to support phylogenetic studies. A previous preliminary study used the fpv167 locus, which encodes orthologues of vaccinia virus core protein P4b (A3). PCR per se did not discriminate between viruses, but restriction-enzyme or sequence analysis indicated that the avipoxviruses clustered either with FWPV or with CNPV. Here, further study of the P4b locus demonstrated a third cluster, from psittacine birds. A newly identified locus, flanking fpv140 (orthologue of vaccinia virus H3L), confirms the taxonomic structure. This locus is particularly useful in that viruses from the fowlpox-like and canarypox-like clusters can be discriminated by PCR on the basis of fragment size, whilst sequence comparison allows discrimination for the first time between Pigeonpox virus and Turkeypox virus. Except within the psittacines, virus and avian host taxonomies do not show tight correlation, with viruses from the same species located in very different clades. Nor are all the existing recognized avipoxvirus species, defined primarily by avian host species (such as CNPV and Sparrowpox virus), resolved within the present structure.

Publisher

Microbiology Society

Subject

Virology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3