An essential role of ERK signalling in TPA-induced reactivation of Kaposi's sarcoma-associated herpesvirus

Author:

Cohen Adina1,Brodie Chaya1,Sarid Ronit1

Affiliation:

1. Bar-Ilan University, Faculty of Life Sciences, 52900 Ramat-Gan, Israel

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated causally in the development of several human malignancies, including primary effusion lymphoma (PEL). PEL cells serve as tools for KSHV research, as most of them are latently infected and allow lytic virus replication in response to various stimuli. 12-O-Tetradecanoyl-phorbol-13-acetate (TPA) is the most potent inducer of lytic KSHV reactivation; nevertheless, the exact mechanism by which it induces reactivation remains unknown. It has previously been reported by our group that the protein kinase C (PKC)δisoform plays a crucial role in TPA-mediated KSHV reactivation. Here, the activation pathway was dissected and it was demonstrated that TPA induces KSHV reactivation via stimulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Western blot analysis revealed a rapid phosphorylation of ERK1/2. Cells treated with MAPK/ERK inhibitors before TPA addition demonstrated repression of ERK1/2 phosphorylation, which was associated with a block of KSHV lytic-gene expression. This inhibition prevented c-Fos accumulation, yet increased c-Jun phosphorylation. Similar results were obtained in response to rottlerin, a selective PKCδinhibitor. Notably, the PKC inhibitor GF 109203X reduced ERK1/2 phosphorylation, c-Fos accumulation, c-Jun phosphorylation and KSHV reactivation. It is proposed that TPA induces KSHV reactivation through at least two arms. The first involves PKCδ, ERK phosphorylation and c-Fos accumulation, whilst the second requires another PKC isoform that induces the phosphorylation of c-Jun. c-Fos and c-Jun jointly form an active AP-1 complex, which functions to activate the lytic cascade of KSHV.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3