Site-directed mutagenesis of the VP2 gene of Chicken anemia virus affects virus replication, cytopathology and host-cell MHC class I expression

Author:

Peters Michelle A.1,Crabb Brendan S.2,Washington Elizabeth A.1,Browning Glenn F.1

Affiliation:

1. Department of Veterinary Science, The University of Melbourne, Victoria 3010, Australia

2. Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, The Royal Melbourne Hospital, Victoria 3050, Australia

Abstract

Chicken anemia virus (CAV) is an immunosuppressive pathogen of chickens. To further examine the role of viral protein 2 (VP2), which possesses dual-specificity protein phosphatase (DSP) activity, in viral cytopathogenicity and its influence on viral growth and virulence, an infectious genomic clone of CAV was subjected to site-directed mutagenesis. Substitution mutations C87R, R101G, K102D and H103Y were introduced into the DSP catalytic motif and R129G, Q131P, R/K/K150/151/152G/A/A, D/E161/162G/G, L163P, D169G and E186G into a region predicted to have a high degree of secondary structure. All mutant constructs were infectious, but their growth curves differed. The growth curve for mutant virus R/K/K150/151/152G/A/A was similar to that for wild-type virus, a second cluster of mutant viruses had an extended latent period and a third cluster of mutant viruses had extended latent and eclipse periods. All mutants had a reduced cytopathogenic effect in infected cells and VP3 was restricted to the cytoplasm. Mutation of the second basic residue (K102D) in the atypical DSP signature motif resulted in a marked reduction in virus replication efficiency, whereas mutation of the first basic residue (R101G) attenuated cytopathogenicity, but did not reduce replication efficiency. Expression of major histocompatibility complex (MHC) class I was markedly downregulated in cells infected with wild-type CAV, but not in those infected with mutants. This study further demonstrates the significance of VP2 in CAV replication and shows that specific mutations introduced into the gene encoding this protein can reduce virus replication, cytopathogenicity and downregulation of MHC I in infected cells.

Publisher

Microbiology Society

Subject

Virology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3