Affiliation:
1. Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
2. Center for Vaccine Development, Division of Infectious Diseases and Tropical Pediatrics, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
Abstract
Haemolysin E (HlyE) is a novel pore-forming toxin first identified in Escherichia coli K-12. Analysis of the 3-D structure of HlyE led to the proposal that a unique hydrophobic β-hairpin structure (the β-tongue, residues 177–203) interacts with the lipid bilayer in target membranes. In seeming contradiction to this, the hlyE sequence from a pathogenic E. coli strain (JM4660) that lacks all other haemolysins has been reported to encode an Arg residue at position 188 that was difficult to reconcile with the proposed role of the β-tongue. Here it is shown that the JM4660 hlyE sequence encodes Gly, not Arg, at position 188 and that substitution of Gly188 by Arg in E. coli K-12 HlyE abolishes activity, emphasizing the importance of the head domain in HlyE function. Nevertheless, 76 other amino acid substitutions were confirmed compared to the HlyE protein of E. coli K-12. The JM4660 HlyE protein was dimeric, suggesting a mechanism for improving toxin solubility, and it lysed red blood cells from many species by forming 36–41 Å diameter pores. However, the haemolytic phenotype of JM4660 was found to be unstable due to defects in HlyE export, indicating that export of active HlyE is not an intrinsic property of the protein but requires additional components. TnphoA mutagenesis of hlyE shows that secretion from the cytoplasm to the periplasm does not require the carboxyl-terminal region of HlyE. Finally, disruption of genes associated with cell envelope function, including tatC, impairs HlyE export, indicating that outer membrane integrity is important for effective HlyE secretion.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献