Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli

Author:

Creasey Elizabeth A.1,Delahay Robin M.1,Daniell Sarah J.1,Frankel Gad1

Affiliation:

1. Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Flowers Building, Imperial College, London SW7 2AZ, UK

Abstract

Many Gram-negative pathogens employ a specific secretion pathway, termed type III secretion, to deliver virulence effector proteins directly to the membranes and cytosol of host eukaryotic cells. Subsequent functions of many effector proteins delivered in this manner result in subversion of host-signalling pathways to facilitate bacterial entry, survival and dissemination to neighbouring cells and tissues. Whereas the secreted components of type III secretion systems (TTSSs) from different pathogens are structurally and functionally diverse, the structural components and the secretion apparatus itself are largely conserved. TTSSs are large macromolecular assemblies built through interactions between protein components of hundreds of individual subunits. The goal of this project was to screen, using the standard yeast two-hybrid system, pair-wise interactions between components of the enteropathogenicEscherichia coliTTSS. To this end 37 of the 41 genes encoded by the LEE pathogenicity island were cloned into both yeast two-hybrid system vectors and all possible permutations of interacting protein pairs were screened for. This paper reports the identification of 22 novel interactions, including interactions between inner-membrane structural TTSS proteins; between the type III secreted translocator protein EspD and structural TTSS proteins; between established and putative chaperones and their cognate secreted proteins; and between proteins of undefined function.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3