DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential

Author:

Renelli Marika1,Matias Valério1,Lo Reggie Y.1,Beveridge Terry J.1

Affiliation:

1. Canadian Bacterial Disease Network–National Centre of Excellence and Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Natural membrane vesicles (n-MVs) produced byPseudomonas aeruginosaPAO1 and PAO1 carrying plasmid pAK1900 (p-MVs) were purified and analysed for DNA content. The MVs were isolated by a procedure designed to ensure no cellular contamination from the parent MV-producing cells. Fluorometry analysis revealed that p-MVs were associated with 7·80 ng DNA (20 μg MV protein)−1. PCR analysis using specific primers for pAK1900 sequences and a chromosomal target,oprL, indicated that only plasmid DNA was contained within the lumen of p-MVs after exogenous DNA was digested by DNase. MVs have previously been shown to be capable of fusing into the outer membrane (OM) of PAO1 andEscherichia coliDH5α. Accordingly, p-MVs should deliver the plasmid into the periplasm, where it would only have to by-pass the plasma membrane (PM) for effective transformation. It was speculated that p-MVs should increase transformation efficiency but the data suggested otherwise. p-MVs did not transform PAO1 nor DH5αunder a variety of transforming conditions. To characterize p-MVs and to ensure that membrane-encapsulated pAK1900 was not derived from a small proportion of lysed cells within the culture and bound by PM instead of OM, which typically forms n-MVs, the physical and ultrastructural differences between n- and p-MVs were determined. Cryo-transmission electron microscopy (cryo-TEM) revealed that n-MVs and p-MVs closely resembled isolated OM. Buoyant density measurements using isopycnic sucrose gradients on isolated PM, OM, n- and p-MVs demonstrated that isolated OM and n-MVs both fractionated into two bands (ρ=1·240 and 1·260 g ml−1). p-MVs also produced two bands but at two different densities (ρ=1·250 and 1·265 g ml−1) which may be attributed to the presence of DNA. SDS-PAGE showed that p-MVs possessed most major OM proteins and also contained 43·70 nmol 3-deoxy-d-manno-octulosonic acid (KDO) (mg protein)−1as an LPS marker. The amount of NADH oxidase activity, a PM enzyme, in the p-MVs was barely detectable. These data strongly suggest that p-MVs are OM-based, with little if any PM material associated with them. The possibility of whether exogenous plasmid DNA could enter n-MVs once the vesicles had departed from cells was also tested; surprisingly, a small amount of DNA could. Accordingly, the data suggest that DNA can be taken up by MVs using two separate routes: (1) via a periplasmic route and (2) via an extracellular, exogenous route.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3