Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy

Author:

Marchandin Hélène1,Teyssier Corinne2,Siméon de Buochberg Michèle2,Jean-Pierre Hélène1,Carriere Christian1,Jumas-Bilak Estelle2

Affiliation:

1. Service de Bactériologie, Hôpital Arnaud de Villeneuve, 34295 Montpellier Cedex 5, France

2. Laboratoire de Bactériologie, Faculté de Pharmacie, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France

Abstract

Among the seven species characterized within the genus Veillonella, three (Veillonella dispar, Veillonella parvula and Veillonella atypica) have so far been isolated from human flora and during infectious processes. Sequencing and analysis of 16S rDNA (rrs) has been described as the best method for identification of Veillonella strains at the species level since phenotypic characteristics are unable to differentiate between species. rrs sequencing for the three species isolated from humans showed more than 98 % identity between them. Four rrs copies were found in the reference strains and in all the clinical isolates studied. The sequences of each rrs were determined for the clinical strain ADV 360.1, and they showed a relatively high level of heterogeneity (1·43 %). In the majority of cases, polymorphic positions corresponded to nucleotides allowing differentiation between the three species isolated from humans. Moreover, variability observed between rrs copies was higher than that between 16S rDNA sequences of V. parvula and V. dispar. Phylogenetic analysis showed that polymorphism between rrs copies affected the position of strain ADV 360.1 in the tree. Variable positions occurred in stems and loops belonging to variable and hypervariable regions of the 16S rRNA secondary structure but did not change the overall structure of the 16S rRNA. PCR-RFLP experiments performed on 27 clinical isolates of Veillonella sp. suggested that inter-rrs heterogeneity occurs widely among the members of the genus Veillonella. These results, together with the lack of phenotypic criteria for species differentiation, give preliminary arguments for unification of V. dispar and V. parvula.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3