A dual lethal system to enhance containment of recombinant micro-organisms

Author:

Torres Begoña1,Jaenecke Susanne2,Timmis Kenneth N.2,García José L.1,Díaz Eduardo1

Affiliation:

1. Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain

2. Division of Microbiology, GBF-National Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany

Abstract

Active containment systems based on the controlled expression of a lethal gene are designed to increase containment of recombinant micro-organisms used for environmental applications. A major drawback in containment is the existence of mutations that generate surviving cells that cease to respond to the toxic effect of the lethal function. In this work the authors have developed for the first time a strategy to reduce the problem of mutations and increase the efficiency of containment based on the combination of two lethal functions acting on different cellular targets of major concern in containment, DNA and RNA, and whose expression is under control of different regulatory signals. To engineer the dual gene containment circuit, two toxin–antitoxin pairs, i.e. the colicin E3–immunity E3 and theEcoRI restriction–modification systems, were combined. The genes encoding the immunity E3 and theEcoRI methyltransferase proteins (antitoxins) were stably inserted into the chromosome of the host cell, whereas the broad-host-range lethal genes encoding the colicin E3 RNase and theEcoRI restriction endonuclease (toxins) were flanking the contained trait in a plasmid. This dual lethal cassette decreased gene transfer frequencies, through killing of the recipient cells, by eight orders of magnitude, which provides experimental evidence that the anticipated containment level due to the combination of single containment systems is generally achieved. Survivors that escaped killing were analysed and the mutational events involved were characterized.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3