Affiliation:
1. Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
Abstract
Compaction of theEscherichia colinucleoid in the cell's centre was associated with the loss of colony-forming ability; these effects were caused by induction of Cyt1Aa, the cytotoxic 27 kDa protein fromBacillus thuringiensissubsp.israelensis. Cyt1Aa-affected compaction of the nucleoids was delayed but eventually more intense than compaction caused by chloramphenicol. The possibility that small, compact nucleoids in Cyt1Aa-expressing cells resulted in DNA replication run-out and segregation following cell division was ruled out by measuring relative nucleoid length. Treatments with membrane-perforating substances other than Cyt1Aa did not cause such compaction of the nucleoids, but rather the nucleoids overexpanded to occupy nearly all of the cell volume. These findings support the suggestion that, in addition to its perforating ability, Cyt1Aa causes specific disruption of nucleoid associations with the cytoplasmic membrane.In situimmunofluorescence labelling with Alexa did not demonstrate a great amount of Cyt1Aa associated with the membrane. Clear separation between Alexa-labelled Cyt1Aa and 4′,6-diamidino-2-phenylindole (DAPI)-stained DNA indicates that the nucleoid does not bind Cyt1Aa. Around 2 h after induction, nucleoids in Cyt1Aa-expressing cells started to decompact and expanded to fill the whole cell volume, most likely due to partial cell lysis without massive peptidoglycan destruction.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献