High-affinity myo-inositol transport in Candida albicans: substrate specificity and pharmacology

Author:

Jin Jean Huaqian1,Seyfang Andreas1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2100, USA

Abstract

Inositol is considered a growth factor in yeast cells and it plays an important role inCandidaas an essential precursor for phospholipomannan, a glycophosphatidylinositol (GPI)-anchored glycolipid on the cell surface ofCandidawhich is involved in the pathogenicity of this opportunistic fungus and which binds to and stimulates human macrophages. In addition, inositol plays an essential role in the phosphatidylinositol signal transduction pathway, which controls many cell cycle events. Here, high-affinitymyo-inositol uptake inCandida albicanshas been characterized, with an apparentKmvalue of 240±15 μM, which appears to be active and energy-dependent as revealed by inhibition with azide and protonophores (FCCP, dinitrophenol).Candida myo-inositol transport was sodium-independent but proton-coupled with an apparentKmvalue of 11·0±1·1 nM for H+, equal pH 7·96±0·05, suggesting that theC. albicansmyo-inositol–H+transporter is fully activated at physiological pH.C. albicansinositol transport was not affected by cytochalasin B, phloretin or phlorizin, an inhibitor of mammalian sodium-dependent inositol transport. Furthermore,myo-inositol transport showed high substrate specificity for inositol and was not significantly affected by hexose or pentose sugars as competitors, despite their structural similarity. Transport kinetics in the presence of eight different inositol isomers as competitors revealed that proton bonds between the C-2, C-3 and C-4 hydroxyl groups ofmyo-inositol and the transporter protein play a critical role for substrate recognition and binding. It is concluded thatC. albicansmyo-inositol–H+transport differs kinetically and pharmacologically from the human sodium-dependentmyo-inositol transport system and constitutes an attractive target for delivery of cytotoxic inositol analogues in this pathogenic fungus.

Publisher

Microbiology Society

Subject

Microbiology

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3