Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1

Author:

Kim Eun-Jin1,Sabra Wael1,Zeng An-Ping1

Affiliation:

1. GBF – Gesellschaft für Biotechnologische Forschung mbH, Division of Molecular Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany

Abstract

Pseudomonas aeruginosaPAO1 was recently found to exhibit two remarkable physiological responses to oxidative stress: (1) a strong reduction in the efficiency of oxygen transfer from the gas phase into the liquid phase, thus causing oxygen limitation in the culture and (2) formation of a clear polysaccharide capsule on the cell surface. In this work, it has been shown that the iron concentration in the culture plays a crucial role in evoking these phenomena. The physiological responses of twoP. aeruginosaPAO1 isolates (NCCB 2452 and ATCC 15692) were examined in growth media with varied iron concentrations. In a computer-controlled bioreactor cultivation system for controlled dissolved oxygen tension (pO2), a strong correlation between the exhaustion of iron and the onset of oxygen limitation was observed. The oxygen transfer rate of the culture, characterized by the volumetric oxygen transfer coefficient,kLa, significantly decreased under iron-limited conditions. The formation of alginate and capsule was more strongly affected by iron concentration than by oxygen concentration. The reduction of the oxygen transfer rate and the subsequent oxygen limitation triggered by iron deficiency may represent a new and efficient way forP. aeruginosaPAO1 to adapt to growth conditions of iron limitation. Furthermore, the secretion of proteins into the culture medium was strongly enhanced by iron limitation. The formation of the virulence factor elastase and the iron chelators pyoverdine and pyochelin also significantly increased under iron-limited conditions. These results have implications for lung infection of cystic fibrosis patients byP. aeruginosain view of the prevalence of iron limitation at the site of infection and the respiratory failure leading to death.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3