The nitrogen-fixing gene (nifH) of Rhodopseudomonas palustris: a case of lateral gene transfer?

Author:

Cantera Jose Jason L.1,Kawasaki Hiroko1,Seki Tatsuji1

Affiliation:

1. The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi 565-0871, Japan

Abstract

Nitrogen fixation is catalysed by some photosynthetic bacteria. This paper presents a phylogenetic comparison of a nitrogen fixation gene (nifH) with the aim of elucidating the processes underlying the evolutionary history of Rhodopseudomonas palustris. In the NifH phylogeny, strains of Rps. palustris were placed in close association with Rhodobacter spp. and other phototrophic purple non-sulfur bacteria belonging to the α-Proteobacteria, separated from its close relatives Bradyrhizobium japonicum and the phototrophic rhizobia (Bradyrhizobium spp. IRBG 2, IRBG 228, IRBG 230 and BTAi 1) as deduced from the 16S rRNA phylogeny. The close association of the strains of Rps. palustris with those of Rhodobacter and Rhodovulum, as well as Rhodospirillum rubrum, was supported by the mol% G+C of their nifH gene and by the signature sequences found in the sequence alignment. In contrast, comparison of a number of informational and operational genes common to Rps. palustris CGA009, B. japonicum USDA 110 and Rhodobacter sphaeroides 2.4.1 suggested that the genome of Rps. palustris is more related to that of B. japonicum than to the Rba. sphaeroides genome. These results strongly suggest that the nifH of Rps. palustris is highly related to those of the phototrophic purple non-sulfur bacteria included in this study, and might have come from an ancestral gene common to these phototrophic species through lateral gene transfer. Although this finding complicates the use of nifH to infer the phylogenetic relationships among the phototrophic bacteria in molecular diversity studies, it establishes a framework to resolve the origins and diversification of nitrogen fixation among the phototrophic bacteria in the α-Proteobacteria.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3