The roles of SsrA–SsrB and OmpR–EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system

Author:

Garmendia Junkal1,Beuzón Carmen R.1,Ruiz-Albert Javier1,Holden David W.1

Affiliation:

1. Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK

Abstract

The type III secretion system (TTSS) encoded bySalmonella typhimuriumpathogenicity island 2 (SPI-2) is expressed after bacterial entry into host cells. The SPI-2 TTSS secretes the translocon components SseBCD, which translocate across the vacuolar membrane a number of effector proteins whose action is required for intracellular bacterial replication. Several of these effectors, including SifA and SifB, are encoded outside SPI-2. The two-component regulatory system SsrA–SsrB, encoded within SPI-2, controls the expression of components of the SPI-2 TTSS apparatus as well as its translocated effectors. The expression of SsrA–B is in turn regulated by the OmpR–EnvZ two-component system, by direct binding of OmpR to thessrABpromoter. Several environmental signals have been shown to inducein vitroexpression of genes regulated by the SsrA–B or OmpR–EnvZ systems. In this work, immunoblotting and flow cytometry were used to analyse the roles of SsrA–B and OmpR–EnvZ in coupling different environmental signals to changes in expression of a SPI-2 TTSS translocon component (SseB) and two effector genes (sifAandsifB). Using single and double mutant strains the relative contribution of each regulatory system to the response generated by low osmolarity, acidic pH or the absence of Ca2+was determined. SsrA–B was found to be essential for the induction of SPI-2 gene expression in response to each of these individual signals. OmpR–EnvZ was found to play a minor role in sensing these signals and to require a functional SsrA–B system to mediate their effect on SPI-2 TTSS gene expression.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3