A three-dimensional, stochastic simulation of biofilm growth and transport-related factors that affect structure

Author:

Chang Ivan1,Gilbert Eric S.2,Eliashberg Natalya1,Keasling Jay D.1

Affiliation:

1. Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462, USA

2. Department of Biology, Georgia State University, Atlanta, GA 30303, USA

Abstract

Biofilm structural heterogeneity affects a broad range of microbially catalysed processes. Solute transport limitation and autoinhibitor production, two factors that contribute to heterogeneous biofilm development, were investigated using BacMIST, a computer simulation model. BacMIST combines a cellular automaton algorithm for biofilm growth with Brownian diffusion for solute transport. The simulation represented the growth of microbial unit cells in a three-dimensional domain modelled after a repeating section of a constant depth film fermenter. The simulation was implemented to analyse the effects of various levels of transport limitation on a growing single-species biofilm. In a system with rapid solute diffusion, cells throughout the biofilm grew at their maximum rate, and no solute gradient was formed over the biofilm thickness. In increasingly transport-limited systems, the rapidly growing fraction of the biofilm population decreased, and was found exclusively at the biofilm–liquid interface. Trans-biofilm growth substrate gradients also deepened with increasing transport limitation. Autoinhibitory biofilm growth was simulated for various rates of microbially produced inhibitor transport. Inhibitor transport rates affected both the biofilm population dynamics and the resulting biofilm structures. The formation of networks of void spaces in slow-growing regions of the biofilm and the development of columns in the fast-growing regions suggested a possible mechanism for the microscopically observed evolution of channels in biofilms.

Publisher

Microbiology Society

Subject

Microbiology

Reference48 articles.

1. Transport in lymphatic capillaries: II. Microscopic velocity measurement with fluorescence recovery after photobleaching;Berk;Am J Physiol,1996

2. Review of membrane aerated biofilm reactors;Casey;Resour Conserv Recycl,1999

3. Biofilm processes;Characklis,1990a

4. Molecular diffusion and reaction in a biofilm;Characklis,1990b

5. Commensal interactions in a dual-species biofilm exposed to mixed organic compounds;Cowan;Appl Environ Microbiol,2000

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3