The variation of dTDP-l-rhamnose pathway genes in Vibrio cholerae

Author:

Li Qun1,Hobbs Matthew1,Reeves Peter R.1

Affiliation:

1. School of Molecular and Microbial Biosciences, Bldg G08, University of Sydney, NSW 2006, Australia

Abstract

The genetic variation in the dTDP-l-rhamnose pathway genes (rmlA, rmlB, rmlC and rmlD) in Vibrio cholerae was investigated. The genes are part of the O antigen gene cluster and the aim was to study lateral gene transfer of O antigen gene clusters. The rml genes of an O6 strain were cloned using an Escherichia coli K-12 strain designed for selecting cloned rml genes. Thirty-three strains carrying the known rhamnose-containing O antigens were probed with O6-based rml gene probes, and 19 were positive with from one to all four of the gene probes. Nine rml gene sets from this group were sequenced and found to be in the order rmlBADC, at the 5′ end of the gene clusters. A gradient in the level of variation was observed, with highly similar sequences at the 5′ end rmlB gene, but very divergent and strain-specific sequences at the 3′ end of the rml gene set. The change in level of similarity varied in position, but was always abrupt and coincided with a change in GC content, indicating that the 5′ and 3′ parts are of different origin, and that recombination within rml genes has occurred. The rml gene sets of two of the strains that did not hybridize with any O6 rml gene probes were also cloned and sequenced. Both gene sets were in the middle of the O antigen gene cluster and were very divergent from each other and all other rml gene sets. This supports the hypothesis that presence of rml genes at the end of the O antigen gene cluster facilitates lateral gene transfer of rml-containing O antigen gene clusters in V. cholerae. The sequence relationships make it possible to identify sites of recombination and to distinguish DNA that has long been in V. cholerae and DNA that probably came into the species with the O antigen gene cluster.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3