Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease

Author:

Kant Ravi1,de Vos Willem M.231,Palva Airi1,Satokari Reetta1

Affiliation:

1. Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland

2. Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands

3. Haartman Institute, University of Helsinki, PO Box 21, FI-00014, Helsinki, Finland

Abstract

Toll-like receptor (TLR) signalling plays an important role in epithelial and immune cells of the intestine. TLR9 recognizes unmethylated CpG motifs in bacterial DNA, and TLR9 signalling maintains the gut epithelial homeostasis. Here, we carried out a bioinformatic analysis of the frequency of CpG motifs in the genomes of gut commensal bacteria across major bacterial phyla. The frequency of potentially immunostimulatory CpG motifs (all CpG hexamers) or purine-purine-CG-pyrimidine-pyrimidine hexamers was linearly dependent on the genomic G+C content. We found that species belonging to Proteobacteria, Bacteroidetes and Actinobacteria (including bifidobacteria) carried high counts of GTCGTT, the optimal motif stimulating human TLR9. We also found that Enterococcus faecalis, Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus, whose strains have been marketed as probiotics, had high counts of GTCGTT motifs. As gut bacterial species differ significantly in their genomic content of CpG motifs, the overall load of CpG motifs in the intestine depends on the species assembly of microbiota and their cell numbers. The optimal CpG motif content of microbiota may depend on the host’s physiological status and, consequently, on an adequate level of TLR9 signalling. We speculate that microbiota with increased numbers of microbes with CpG motif-rich DNA could better support mucosal functions in healthy individuals and improve the T-helper 1 (Th1)/Th2 imbalance in allergic diseases. In autoimmune disorders, CpG motif-rich DNA could, however, further increase the Th1-type immune responsiveness. Estimation of the load of microbe-associated molecular patterns, including CpG motifs, in gut microbiota could shed new light on host–microbe interactions across a range of diseases.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3