Reference map and comparative proteomic analysis of Neisseria gonorrhoeae displaying high resistance against spectinomycin

Author:

Nabu Sunanta1,Lawung Ratana21,Isarankura-Na-Ayudhya Patcharee3,Isarankura-Na-Ayudhya Chartchalerm1,Roytrakul Sittiruk4,Prachayasittikul Virapong1

Affiliation:

1. Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand

2. Center of Medical Laboratory Services, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand

3. Department of Medical Technology, Faculty of Allied Health Science, Thammasat University, Pathumthani 12120, Thailand

4. Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand

Abstract

A proteome reference map of Neisseria gonorrhoeae was successfully established using two-dimensional gel electrophoresis in conjunction with matrix-assisted laser desorption ionization–time of flight mass spectrometry. This map was further applied to compare protein expression profiles of high-level spectinomycin-resistant (clinical isolate) and -susceptible (reference strain) N. gonorrhoeae following treatment with subminimal inhibitory concentrations (subMICs) of spectinomycin. Approximately 200 protein spots were visualized by Coomassie brilliant blue G-250 staining and 66 spots representing 58 unique proteins were subsequently identified. Most of the identified proteins were analysed as cytoplasmic proteins and belonged to the class of energy metabolism. Comparative proteomic analysis of whole protein expression of susceptible and resistant gonococci showed up to 96 % similarity while eight proteins were found to be differentially expressed in the resistant strain. In the presence of subMICs of spectinomycin, it was found that 50S ribosomal protein L7/L12, an essential component for ribosomal translocation, was upregulated in both strains, ranging from 1.5- to 3.5-fold, suggesting compensatory mechanisms of N. gonorrhoeae in response to antibiotic that inhibits protein synthesis. Moreover, the differential expression of proteins involved in energy metabolism, amino acid biosynthesis, and the cell envelope was noticeably detected, indicating significant cellular responses and adaptation against antibiotic stress. Such knowledge provides valuable data, not only fundamental proteomic data, but also knowledge of the mode of action of antibiotic and secondary target proteins implicated in adaptation and compensatory mechanisms.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3