Polyethyleneimine and polyethyleneimine-based nanoparticles: novel bacterial and yeast biofilm inhibitors

Author:

Azevedo M. M.123,Ramalho P.3,Silva A. P.13,Teixeira-Santos R.3,Pina-Vaz C.413,Rodrigues A. G.513

Affiliation:

1. Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, Portugal

2. School D. Maria II, Rua da Alegria, V.N. Famalicão, Portugal

3. Department of Microbiology, Faculty of Medicine, University of Porto, Portugal

4. Department of Microbiology, Hospital S. João, Porto, Portugal

5. Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital S. João, Porto

Abstract

Biofilms are commonly involved in medical device-related infections. The purpose of this study was to determine the antimicrobial and anti-biofilm activity of polyethyleneimine (PEI) and PEI-based nanoparticles (nanoPEI) against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii and Candida albicans (clinical and ATCC strains), and to evaluate their effect upon biofilm formation on polyurethane (PUR)-like catheters. MICs and minimal lethal concentrations of PEI and nanoPEI were determined according to CLSI microdilution reference protocols. For PEI, the MIC value was 195.31 mg l−1 for all the bacteria and 48.83 mg l−1 for the yeast strains. For nanoPEI, the MIC value was 1250 mg l−1 for all the strains except A. baumannii, for which it was 2500 mg l−1. Biofilm formation was assessed with PUR-like catheter segments and biofilm metabolic activity was quantified by colorimetry with a tetrazolium reduction assay. Plasma membrane integrity and membrane potential were assessed by flow cytometry after staining microbial cells with a membrane-impermeable dye, propidium iodide, and a membrane-potential marker, DiBAC4(3). PEI inhibited growth of all microbial species; higher concentrations of nanoPEI were needed to inhibit growth of all species. Biofilm formation in the presence of anti-bacterial PEI activity was dose-dependent (except for S. epidermidis) and species-related. NanoPEI at 0.5×MIC and MIC significantly reduced the metabolic activity of biofilms of S. aureus, S. epidermidis and A. baumannii, whereas 2×MIC was required in order to inhibit biofilm metabolic activity.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3