Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats

Author:

Sorokin Dimitry Y.12,Muntyan Maria S.3,Panteleeva Anzhela N.4,Muyzer Gerard1

Affiliation:

1. Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands

2. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, 117811 Moscow, Russia

3. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorob’evy Gory, 119992 Moscow, Russia

4. Bioengineering Centre, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/1, 117811 Moscow, Russia

Abstract

A moderately salt-tolerant and obligately alkaliphilic, chemolithoautotrophic sulfur-oxidizing bacterium, strain HL-EbGr7T, was isolated from a full-scale bioreactor removing H2S from biogas under oxygen-limited conditions. Another strain, ALJ17, closely related to HL-EbGr7T, was isolated from a Kenyan soda lake. Cells of the isolates were relatively long, slender rods, motile by a polar flagellum. Although both strains were obligately aerobic, micro-oxic conditions were preferred, especially at the beginning of growth. Chemolithoautotrophic growth was observed with sulfide and thiosulfate in a pH range of 8.0–10.5 (optimum at pH 10.0) and a salinity range of 0.2–1.5 M total Na+ (optimum at 0.4 M). The genome sequence of strain HL-EbGr7T demonstrated the presence of genes encoding the reverse Dsr pathway and a truncated Sox pathway for sulfur oxidation and enzymes of the Calvin–Benson cycle of autotrophic CO2 assimilation with ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) type I. The dominant cellular fatty acids were C18 : 1ω7, C16 : 0 and C19 : 0 cyclo. Based on 16S rRNA gene sequencing, the two strains belonged to a single phylotype within the genus Thioalkalivibrio in the Gammaproteobacteria . Despite being related most closely to Thioalkalivibrio denitrificans , the isolates were unable to grow by denitrification. On the basis of phenotypic and phylogenetic analysis, the novel isolates are proposed to represent a novel species, Thioalkalivibrio sulfidiphilus sp. nov., with the type strain HL-EbGr7T ( = NCCB 100376T  = UNIQEM U246T).

Funder

RFBR

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3