Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi

Author:

Löffler Frank E.123,Yan Jun23,Ritalahti Kirsti M.13,Adrian Lorenz4,Edwards Elizabeth A.5,Konstantinidis Konstantinos T.6,Müller Jochen A.4,Fullerton Heather7,Zinder Stephen H.7,Spormann Alfred M.8

Affiliation:

1. Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

2. Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA

3. Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA

4. Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, D-04318 Leipzig, Germany

5. Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada

6. School of Civil and Environmental Engineering and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA

7. Department of Microbiology, Cornell University, Ithaca, NY 14853, USA

8. Departments of Civil and Environmental Engineering and of Chemical Engineering, Stanford University, Stanford, CA 94305, USA

Abstract

Six obligately anaerobic bacterial isolates (195T, CBDB1, BAV1, VS, FL2 and GT) with strictly organohalide-respiring metabolisms were obtained from chlorinated solvent-contaminated aquifers, contaminated and uncontaminated river sediments or anoxic digester sludge. Cells were non-motile with a disc-shaped morphology, 0.3–1 µm in diameter and 0.1–0.2 µm thick, and characteristic indentations on opposite flat sides of the cell. Growth occurred in completely synthetic, reduced medium amended with a haloorganic electron acceptor (mostly chlorinated but also some brominated compounds), hydrogen as electron donor, acetate as carbon source, and vitamins. No other growth-supporting redox couples were identified. Aqueous hydrogen consumption threshold concentrations were <1 nM. Growth ceased when vitamin B12 was omitted from the medium. Addition of sterile cell-free supernatant of Dehalococcoides-containing enrichment cultures enhanced dechlorination and growth of strains 195 and FL2, suggesting the existence of so-far unidentified stimulants. Dechlorination occurred between pH 6.5 and 8.0 and over a temperature range of 15–35 °C, with an optimum growth temperature between 25 and 30 °C. The major phospholipid fatty acids were 14 : 0 (15.7 mol%), br15 : 0 (6.2 mol%), 16 : 0 (22.7 mol%), 10-methyl 16 : 0 (25.8 mol%) and 18 : 0 (16.6 mol%). Unusual furan fatty acids including 9-(5-pentyl-2-furyl)-nonanoate and 8-(5-hexyl-2-furyl)-octanoate were detected in strains FL2, BAV1 and GT, but not in strains 195T and CBDB1. The 16S rRNA gene sequences of the six isolates shared more than 98 % identity, and phylogenetic analysis revealed an affiliation with the phylum Chloroflexi and more than 10 % sequence divergence from other described isolates. The genome sizes and G+C contents ranged from 1.34 to 1.47 Mbp and 47 to 48.9 mol% G+C, respectively. Based on 16S rRNA gene sequence comparisons, genome-wide average nucleotide identity and phenotypic characteristics, the organohalide-respiring isolates represent a new genus and species, for which the name Dehalococcoides mccartyi gen. nov., sp. nov. is proposed. Isolates BAV1 ( = ATCC BAA-2100  = JCM 16839  = KCTC 5957), FL2 ( = ATCC BAA-2098  = DSM 23585  = JCM 16840  = KCTC 5959), GT ( = ATCC BAA-2099  = JCM 16841  = KCTC 5958), CBDB1, 195T ( = ATCC BAA-2266T  = KCTC 15142T) and VS are considered strains of Dehalococcoides mccartyi, with strain 195T as the type strain. The new class Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov. are described to accommodate the new taxon.

Funder

German Research Society

European Research Council

National Science Foundation

Strategic Environmental Research and Development Program

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3