Micromonospora schwarzwaldensis sp. nov., a producer of telomycin, isolated from soil

Author:

Gurovic Maria Soledad Vela1,Müller Sebastian2,Domin Nicole1,Seccareccia Ivana1,Nietzsche Sandor3,Martin Karin4,Nett Markus1

Affiliation:

1. Junior Research Group ‘Secondary Metabolism of Predatory Bacteria’, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, 07745 Jena, Germany

2. Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, 07745 Jena, Germany

3. Centre for Electron Microscopy, University Hospital Jena, 07745 Jena, Germany

4. Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology e. V., Hans-Knöll-Institute, 07745 Jena, Germany

Abstract

A Gram-stain-positive, spore-forming actinomycete strain (HKI0641T) was isolated from a soil sample collected in the Black Forest, Germany. During screening for antimicrobial natural products this bacterium was identified as a producer of the antibiotic telomycin. Morphological characteristics and chemotaxonomic data indicated that the strain belonged to the genus Micromonospora . The peptidoglycan of strain HKI0641T contained meso-diaminopimelic acid, and the fatty acid profile consisted predominantly of anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and C16 : 0. MK-10(H4), MK-10(H2) and MK-10 were identified as the major menaquinones. To determine the taxonomic positioning of strain HKI0641T, we computed a binary tanglegram of two rooted phylogenetic trees that were based upon 16S rRNA and gyrB gene sequences. The comparative analysis of the two common classification methods strongly supported the phylogenetic affiliation with the genus Micromonospora , but it also revealed discrepancies in the assignment at the level of the genomic species. 16S rRNA gene sequence analysis identified Micromonospora coxensis DSM 45161T (99.1 % sequence similarity) and Micromonospora marina DSM 45555T (99.0 %) as the nearest taxonomic neighbours, whereas the gyrB sequence of strain HKI0641T indicated a closer relationship to Micromonospora aurantiaca DSM 43813T (95.1 %). By means of DNA–DNA hybridization experiments, it was possible to resolve this issue and to clearly differentiate strain HKI0641T from other species of the genus Micromonospora . The type strains of the aforementioned species of the genus Micromonospora could be further distinguished from strain HKI0641T by several phenotypic properties, such as colony colour, NaCl tolerance and the utilization of carbon sources. The isolate was therefore assigned to a novel species of the genus Micromonospora , for which the name Micromonospora schwarzwaldensis sp. nov. is proposed. The type strain is HKI0641T ( = DSM 45708T = CIP 110415T).

Funder

German Academic Exchange Service

Jena School for Microbial Communication

Deutsche Forschungsgemeinschaft

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3