Affiliation:
1. Louisiana State University, Department of Biological Sciences, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
Abstract
A thermophilic, aerobic, Gram-stain-positive bacterium (strain PM5T), which formed mycelia of irregularly branched filaments and produced multiple exospores per cell, was isolated from a geothermally heated biofilm. Strain PM5T grew at 40–65 °C and pH 4.1–8.0, with optimal growth at 55 °C and pH 6.0. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain PM5T belonged to the class
Ktedonobacteria
, and was related most closely to
Thermogemmatispora onikobensis
ONI-1T (97.7 % similarity) and
Thermogemmatispora foliorum
ONI-5T (96.1 %). Morphological features and fatty acid profiles (major fatty acids: iso-C17 : 0, iso-C19 : 0 and 12,17-dimethyl C18 : 0) supported the affiliation of strain PM5T to the genus
Thermogemmatispora
. Strain PM5T oxidized carbon monoxide [CO; 10±1 nmol h−1 (mg protein)−1], but did not grow with CO as a sole carbon and energy source. Results from analyses of related strains indicated that the capacity for CO uptake occurred commonly among the members of the class
Ktedonobacteria
; 13 of 14 strains tested consumed CO or harboured coxL genes that potentially enabled CO oxidation. The results of DNA–DNA hybridization and physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain PM5T from the two recognized species of the genus
Thermogemmatispora
. Strain PM5T differed from
Thermogemmatispora onikobensis
ONI-1T in its production of orange pigment, lower temperature optimum, hydrolysis of casein and starch, inability to grow with mannitol, xylose or rhamnose as sole carbon sources, and utilization of organic acids and amino acids. Strain PM5T is therefore considered to represent a novel species, for which the name Thermogemmatispora carboxidivorans sp. nov. is proposed. The type strain is PM5T ( = DSM 45816T = ATCC BAA-2534T).
Funder
National Science Foundation
Subject
General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献