Characterization of the polydnaviral ‘T. rostrale virus’ (TrV) gene family: TrV1 expression inhibits in vitro cell proliferation

Author:

Djoumad Abdelmadjid1,Dallaire Fréderic1,Lucarotti Christopher J.2,Cusson Michel1

Affiliation:

1. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380, Stn. Sainte‐Foy, Québec, Quebec G1V 4C7, Canada

2. Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, 1350 Regent Street, Fredericton, New Brunswick E3C 2G6, Canada

Abstract

Tranosema rostrale ichnovirus (TrIV) is a polydnavirus (PDV) transmitted by the endoparasitic wasp T. rostrale to its host Choristoneura fumiferana during oviposition. PDV genes are expressed in infected caterpillars, causing physiological disturbances that promote the survival of the developing endoparasite. The previously sequenced genome of TrIV contains ~86 genes organized in multigene families and distributed on multiple segments of circular dsDNA. Among these, the ‘T. rostrale virus’ (TrV) family comprises seven genes that are absent in other PDV genomes examined to date and whose function(s) remain(s) unknown. Here, we initiated a functional analysis of the TrV family using qPCR, transfection and RNAi approaches. TrV family genes were weakly expressed in wasp ovaries, but some displayed high transcript abundance in parasitized caterpillars. Whilst TrV1 was the most highly transcribed TrV gene in infected caterpillars, transcript levels for TrV5 and TrV6 were nearly undetectable, indicating that they may be pseudogenes. Temporal and tissue-specific patterns of transcript abundance were similar for all expressed TrV family genes, indicative of an apparent lack of difference in function or tissue specificity. Infection of Cf-203 and Sf-21 insect cells with TrIV led to a dose-dependent inhibition of cell proliferation with no sign of apoptosis. Whilst similar inhibition was observed following transfection of cells with a cloned genome segment carrying the TrV1 gene, RNA interference targeting TrV1 largely restored cell growth in TrIV-infected cells, indicating that TrV1 expression was responsible for the observed inhibition. We suggest that TrV genes may contribute to host developmental disruption by interfering with host-cell proliferation during parasitism.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3