Antigenic diversity and cross-reactivity of avian influenza H5N1 viruses in Egypt between 2006 and 2011

Author:

El-Shesheny Rabeh1,Kayali Ghazi2,Kandeil Ahmed1,Cai Zhipeng3,Barakat Ahmed B.4,Ghanim Hossam4,Ali Mohamed A.1

Affiliation:

1. Environmental Research Division, National Research Center, 12311 Dokki, Giza, Egypt

2. Division of Virology, Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA

3. Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA

4. Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Abstract

Influenza epidemics are a major health concern worldwide. Highly pathogenic avian influenza (HPAI) H5N1 viruses in Egypt have been subject to rapid genetic and antigenic changes since the first outbreak in February 2006 and have been endemic in poultry in Egypt since 2008. In this study, 33 H5N1 viruses isolated from avian hosts were antigenically analysed by using a panel of eight mAbs raised against the A/Viet Nam/1203/04 (H5N1; clade 1) and A/bar-headed goose/Qinghai-lake/1A/05 (H5N1; clade 2.2) influenza viruses. Rats were immunized with inactivated whole-virus vaccine produced by reverse genetics with the haemagglutinin and neuraminidase genes of eight antigenically different HPAI H5N1 virus isolates and six internal genes from A/Puerto Rico/8/1934 (PR8) to produce polyclonal antibodies. Cross-reactivity between the obtained polyclonal antibodies and the isolated viruses was assayed. Antigenic cartography of the isolated viruses showed that three antigenic clusters were defined based on haemagglutination inhibition (HI) analysis using mAbs and the majority of viruses isolated in 2010 and 2011 fell into two of these clusters. An antigenic map based on polyclonal rat antisera showed that all virus isolates fell within one extended cluster. Accordingly, continuous surveillance and antigenic characterization will help us determine which virus isolate(s) should be used in poultry vaccine preparation.

Publisher

Microbiology Society

Subject

Virology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3