Ferrimonas futtsuensis sp. nov. and Ferrimonas kyonanensis sp. nov., selenate-reducing bacteria belonging to the Gammaproteobacteria isolated from Tokyo Bay

Author:

Nakagawa Tatsunori1,Iino Takao1,Suzuki Ken-ichiro1,Harayama Shigeaki1

Affiliation:

1. NITE Biological Resource Center, National Institute of Technology and Evaluation (NITE), Kazusakamatari 2-5-8, Kisarazu, Chiba 292-0818, Japan

Abstract

Two novel mesophilic, facultatively anaerobic, selenate-reducing bacteria, designated strains FUT3661T and Asr22-7T, were isolated from a sediment sample and the alimentary tract of littleneck clams, respectively. Both sources of the samples were collected from the coast of Tokyo Bay, Japan. Cells were Gram-negative rods and motile by means of a polar flagellum. The strains reduced selenate to elemental selenium (Se0) and also reduced iron(III) oxyhydroxide, iron(III) citrate, arsenate, manganese(IV) oxide, elemental sulfur and oxygen and used lactate, pyruvate, yeast extract, tryptone and Casamino acids as electron donors and carbon sources. The strains contained both menaquinone (MK-7) and ubiquinones (Q-7 and Q-8) as isoprenoid quinones. The major fatty acids were C16 : 0 and C16 : 1 ω9c. The G+C content of the genomic DNA was 58.1 mol% for strain FUT3661T and 57.2 mol% for strain Asr22-7T. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains were related to members of the genus Ferrimonas (<94.0 % similarities), although the two novel strains formed a separate lineage. 16S rRNA gene sequence similarity between strains FUT3661T and Asr22-7T was 96 %. On the basis of this polyphasic analysis, it was concluded that strains FUT3661T and Asr22-7T represent two novel species within the genus Ferrimonas, for which the names Ferrimonas futtsuensis sp. nov. (type strain FUT3661T=NBRC 101558T=DSM 18154T) and Ferrimonas kyonanensis sp. nov. (type strain Asr22-7T=NBRC 101286T=DSM 18153T) are proposed.

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3