Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov.

Author:

Liu Chenli1,Wu Yehui1,Li Li1,Ma Yingfei1,Shao Zongze1

Affiliation:

1. Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, PR China

Abstract

Two bacterial strains, M-5T and WP0211T, were isolated from the surface water of a waste-oil pool in a coastal dock and from a deep-sea sediment sample from the West Pacific Ocean, respectively. Analysis of 16S rRNA gene sequences indicated that both strains belonged to the class Alphaproteobacteria and were closely related to Thalassospira lucentensis (96.1 and 96.2 %, gene sequence similarity, respectively). Based on the results of physiological and biochemical tests, as well as DNA–DNA hybridization experiments, it is suggested that these isolates represent two novel species of the genus Thalassospira. Various traits allow both novel strains to be differentiated from Thalassospira lucentensis, including oxygen requirement, nitrate reduction and denitrification abilities and major fatty acid profiles, as well as their ability to utilize six different carbon sources. Furthermore, the novel strains may be readily distinguished from each other by differences in their motility, flagellation, growth at 4 °C and 40 °C, their ability to hydrolyse Tween 40 and Tween 80, their utilization of 19 different carbon sources and by quantitative differences in their fatty acid contents. It is proposed that the isolates represent two novel species for which the names Thalassospira xiamenensis sp. nov. (type strain, M-5T=DSM 17429T=CGMCC 1.3998T) and Thalassospira profundimaris sp. nov. (type strain, WP0211T=DSM 17430T=CGMCC 1.3997T) are proposed.

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Reference18 articles.

1. A Hidden Markov Model approach to variation among sites in rate of evolution;Felsenstein;Mol Biol Evol,1996

2. Toward defining the course of evolution: minimum change for a specific tree topology;Fitch;Syst Zool,1971

3. Towards a practical species concept for cultivable bacteria;Goodfellow,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3