Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix

Author:

Campbell Douglas1

Affiliation:

1. Department of Plant Physiology, University of Umeå, S-901-87 Umeå, Sweden

Abstract

The cyanobacterium Calothrix sp. strain PCC 7601 drastically changes phycobiliprotein composition and colour in response to light quality, through complementary chromatic adaptation (CCA). Red light promotes phycocyanin-II and inhibits phycoerythrin synthesis, while green light has the opposite effect, through changes in transcription regulated by a putative green/red photoreceptor(s). The effects of CCA on photosynthesis were characterized by measuring oxygen evolution and chlorophyll fluorescence parameters. Cells fully acclimated to either red or green light achieve a similar photosynthetic quantum yield of oxygen evolution (light-use efficiency). Shifting acclimated cells from green to red or from red to green light caused similar 40% drops in photosynthetic quantum yield. Therefore, full CCA significantly increases light use efficiency, which is of great importance under light-limited growth. Cells growing under red light are in state I, with very low PS II to PS I energy transfer, since red light is absorbed both by phycocyanin in the phycobilisome/PS II supracomplex and by PS I chlorophyll. Cells growing under green light are in state II, with high transfer of excitation energy from the phycobilisome/PS II supracomplex to PS I. This transfer allows green light captured by phycoerythrin to ultimately drive both PS I and PS II photochemistry.

Publisher

Microbiology Society

Subject

Microbiology

Reference49 articles.

1. Complementary chromatic adaptation in a filamentous blue-green alga;Bennett;J Cell Biol,1973

2. Chlorophyll fluorescence as a tool in photosynthesis research;Bolhàr-Nordenkampf,1993

3. Electron transport regulates cellular differentiation in the filamentous cyanobacteria Calothrix;Campbell;Plant Cell,1993

4. Two forms of the photosystem II D1 protein alter energy dissipation and state transitions in the cyanobacterium Synechococcus sp;Campbell,1996

5. Complete nucleotide sequence of the red-light specific set of phycocyanin genes from the cyanobacterium Calothrix PCC7601;Capuano;Nucleic Acids Res,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3