Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae: specificity and kinetics

Author:

Gadd Geoffrey M.1,Laurence Oliver S.1

Affiliation:

1. Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, UK

Abstract

The existence of multiple transport systems for Mn2+ in Saccharomyces cerevisiae has been demonstrated in this study. Mn2+ (supplied as MnCI2) was accumulated by S. cerevisiae at all Mn2+ concentrations examined (25 nM-1 mM) but a log-log plot of uptake rates and total amounts accumulated revealed the existence of at least two Mn2+ concentration-dependent transport systems. Over a low Mn2+ concentration range (25-1000 nM), high-affinity Mn2+ uptake occurred with a K m value of 0.3 μM, while transformation of kinetic data obtained over the concentration range 5-200 μM revealed another system with a K m of 62 μM. Meaningful kinetic analyses were not possible at higher Mn2+ concentrations because of toxicity: only about 30% of cells remained viable after 30 min incubation with 1000 μM MnCI2. Release of K+ accompanied Mn2+ accumulation and this increased with increasing Mn2+ concentration. However, even in non-toxic Mn2+ concentrations, the ratio of Mn2+ uptake to K+ release greatly exceeded electroneutral stoichiometric exchange. In 50 μM MnCI2, the ratio was 1: 123 and this increased to 1:2670 in 1000 μM MnCI2, a toxic concentration. External Mg2+ was found to decrease Mn2+ accumulation at all concentrations examined, but to differing extents. Over the low Mn2+ concentration range (5-200 μM), Mg2+ competitively inhibited Mn2+ uptake with a half-maximal inhibitory concentration, K i, of 5.5 μM Mg2+. However, even in the presence of a 50-fold excess of Mg2+, inhibition of Mn2+ uptake was of the order of 72% and it appears that the cellular requirement for Mn2+ could be maintained even in the presence of such a large excess of Mg2+. Over the high Mn2+ concentration range (5-200 μM), the K i for Mg2+ was 25.2 μM. At low Mn2+ concentrations, Zn2+ and Co2+, but not Cd2+, inhibited Mn2+ uptake, which indicated that the high-affinity Mn2+ uptake system was of low specificity, while at higher Mn2+ concentrations, where the lower-affinity Mn2+ transport system operated, inhibition was less marked. However, competition studies with potentially toxic metal cations were complicated due to toxic effects, particularly noticeable at 50 μM Co2+ and Cd2+.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3