Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer

Author:

Burns David G.1,Janssen Peter H.2,Itoh Takashi3,Kamekura Masahiro4,Echigo Akinobu5,Dyall-Smith Mike L.6

Affiliation:

1. Microbiological Diagnostic Unit, University of Melbourne, Parkville 3052, Australia

2. Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand

3. Japan Collection of Microorganisms, RIKEN BioResource Center, Saitama 351-0198, Japan

4. Halophiles Research Institute, 677-1 Shimizu, Noda-shi, Chiba 278-0043, Japan

5. Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585, Japan

6. Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany

Abstract

Strains 1.15.5T, 2.27.5, 5.24.4 and 6.14.5 were isolated from a solar saltern. They have flattened, rod-shaped cells and are aerobic, extremely halophilic members of the domain Archaea and family Halobacteriaceae. Cells stained Gram-negative and grew optimally in media around neutral pH and containing 20–24 % (w/v) (strains 1.15.5T and 2.27.5) or 22–24 % (w/v) (5.24.4 and 6.14.5) salts. Mg2+ was not required. The DNA G+C contents of these isolates were all close to 58 mol%, and DNA–DNA cross-hybridization showed a mean relatedness of 77 %. Their 16S rRNA gene sequences differed by no more than 1.6 % from each other. Phylogenetic tree reconstructions with other recognized members of the Halobacteriaceae indicated that they formed a distinct clade, with the closest relative being Halorubrum saccharovorum (86.6–87.6 % 16S rRNA gene sequence similarity to the type strain). The only major polar lipid of all four isolates was the sulfated diglycosyl diether lipid S-DGD-1. By phase-contrast microscopy, the long, flattened cells of these strains often displayed a ‘wing-like’ shape. The phenotypic and phylogenetic data support the placement of these isolates into a novel species in a new genus within the Halobacteriaceae, for which we propose the name Halonotius pteroides gen. nov., sp. nov. The type strain of Halonotius pteroides is 1.15.5T (=JCM 14355T =CECT 7525T =DSM 18729T), with the additional reference strains 2.27.5 (=JCM 14356 =DSM 18671), 5.24.4 (=JCM 14357 =DSM 18673) and 6.14.5 (=JCM 14358 =DSM 18692).

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3