CreA influences the metabolic fluxes of Aspergillus nidulans during growth on glucose and xylose

Author:

David Helga1,Krogh Astrid Mørkeberg1,Roca Christophe1,Åkesson Mats1,Nielsen Jens1

Affiliation:

1. Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark

Abstract

The physiological phenotype of Aspergillus nidulans was investigated for different genetic and environmental conditions of glucose repression through the quantification of in vivo fluxes in the central carbon metabolism using 13C-metabolic-flux analysis. The particular focus was the role of the carbon repressor CreA, which is the major regulatory protein mediating carbon repression in many fungal species, in the primary metabolism of A. nidulans. Batch cultivations were performed with a reference strain and a deletion mutant strain (creAΔ4) using [1-13C]glucose as carbon source. The mutant strain was also grown on a mixture of [1-13C]glucose and unlabelled xylose. Fractional enrichment data were measured by gas chromatography-mass spectrometry. A model describing the central metabolism of A. nidulans was used in combination with fractional enrichment data, and measurements of extracellular rates and biomass composition for the estimation of the in vivo metabolic fluxes. The creA-mutant strain showed a lower maximum specific growth rate than the reference strain when grown on glucose (0·11 and 0·25 h−1, respectively), whereas the specific growth rate of the mutant strain grown on the glucose/xylose mixture was identical to that on glucose (0·11 h−1). Different patterns and increased levels of extracellular polyols were observed both upon deletion of the creA gene and upon addition of xylose to the growth medium of the mutant strain. Concerning metabolic fluxes, the major change observed in the flux distribution of A. nidulans upon deletion of the creA gene was a 20 % decrease in the flux through the oxidative part of the pentose-phosphate pathway. Addition of xylose to the growth medium of the mutant resulted in an increase of about 40 % in the activity of the oxidative part of the pentose-phosphate pathway, as well as decreases in the fluxes through the Embden–Meyerhof–Parnas pathway and the tricarboxylic acid cycle (in the range of 20–30 %). The derepression of key pathways leads to alterations in the demands for cofactors, thereby imposing changes in the central metabolism due to the coupling of the many different reactions via the redox and energy metabolism of the cells.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3