Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme

Author:

Kiiskinen Laura-Leena1,Kruus Kristiina1,Bailey Michael1,Ylösmäki Erkko1,Siika-aho Matti1,Saloheimo Markku1

Affiliation:

1. VTT Biotechnology, PO Box 1500, Fin-02044 VTT, Finland

Abstract

Previous studies onMelanocarpus albomyceslaccase have shown that this enzyme is very interesting for both basic research purposes and industrial applications. In order to obtain a reliable and efficient source for this laccase, it was produced in the filamentous fungusTrichoderma reesei. Two approaches were used: production of a non-fused laccase and a hydrophobin–laccase fusion protein. Both proteins were expressed inT. reeseiunder thecbh1promoter, and significantly higher activities were obtained with the non-fused laccase in shake-flask cultures (corresponding to about 230 mg l−1). Northern blot analyses showed rather similar mRNA levels from both expression constructs. Western analysis indicated intracellular accumulation and degradation of the hydrophobin–laccase fusion protein, showing that production of the fusion was limited at the post-transcriptional level. No induction of the unfolded protein response pathway by laccase production was detected in the transformants by Northern hybridization. The most promising transformant was grown in a fermenter in batch and fed-batch modes. The highest production level obtained in the fed-batch culture was 920 mg l−1. The recombinant laccase was purified from the culture supernatant after cleaving the major contaminating protein, cellobiohydrolase I, by papain. The recombinant and wild-type laccases were compared with regard to substrate kinetics, molecular mass, pH optimum, thermostability, and processing of the N- and C-termini, and they showed very similar properties.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3