Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2

Author:

Stafford Graham P.1,Ogi Tomoo2,Hughes Colin1

Affiliation:

1. University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK

2. Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9QG, UK

Abstract

The gene hierarchy directing biogenesis of peritrichous flagella on the surface of Escherichia coli and other enterobacteria is controlled by the heterotetrameric master transcriptional regulator FlhD2C2. To assess the extent to which FlhD2C2 directly activates promoters of a wider regulon, a computational screen of the E. coli genome was used to search for gene-proximal DNA sequences similar to the 42–44 bp inverted repeat FlhD2C2 binding consensus. This identified the binding sequences upstream of all eight flagella class II operons, and also putative novel FlhD2C2 binding sites in the promoter regions of 39 non-flagellar genes. Nine representative non-flagellar promoter regions were all bound in vitro by active reconstituted FlhD2C2 over the K D range 38–356 nM, and of the nine corresponding chromosomal promoter–lacZ fusions, those of the four genes b1904, b2446, wzz fepE and gltI showed up to 50-fold dependence on FlhD2C2 in vivo. In comparison, four representative flagella class II promoters bound FlhD2C2 in the K D range 12–43 nM and were upregulated in vivo 30- to 990-fold. The FlhD2C2-binding sites of the four regulated non-flagellar genes overlap by 1 or 2 bp the predicted −35 motif of the FlhD2C2-activated σ 70 promoters, as is the case with FlhD2C2-dependent class II flagellar promoters. The data indicate a wider FlhD2C2 regulon, in which non-flagellar genes are bound and activated directly, albeit less strongly, by the same mechanism as that regulating the flagella gene hierarchy.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3