Hypoxia abolishes transience of the heat-shock response in the methylotrophic yeast Hansenula polymorpha

Author:

Guerra Emanuela1,Chye Poh Poh2,Berardi Enrico1,Piper Peter W.2

Affiliation:

1. Laboratorio di Genetica Microbica, DiSA, Università Politecnica delle Marche, 60131 Ancona, Italy

2. Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK

Abstract

The heat-shock response is conserved amongst practically all organisms. Almost invariably, the massive heat-shock protein (Hsp) synthesis that it induces is subsequently down-regulated, making this a transient, not a sustained, stress response. This study investigated whether the heat-shock response displays any unusual features in the methylotrophic yeast Hansenula polymorpha, since this organism exhibits the highest growth temperature (49–50 °C) identified to date for any yeast and grows at 47 °C without either thermal death or detriment to final biomass yield. Maximal levels of Hsp induction were observed with a temperature upshift of H. polymorpha from 30 °C to 47–49 °C. This heat shock induces a prolonged growth arrest, heat-shock protein synthesis being down-regulated long before growth resumes at such high temperatures. A 30 °C to 49 °C heat shock also induced thermotolerance, although H. polymorpha cells in balanced growth at 49 °C were intrinsically thermotolerant. Unexpectedly, the normal transience of the H. polymorpha heat-shock response was suppressed completely by imposing the additional stress of hypoxia at the time of the 30 °C to 49 °C temperature upshift. Hypoxia abolishing the transience of the heat-shock response appears to operate at the level of Hsp gene transcription, since the heat-induced Hsp70 mRNA was transiently induced in a heat-shocked normoxic culture but displayed sustained induction in a culture deprived of oxygen at the time of temperature upshift.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3