Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides

Author:

Novak Ryan T.1,Gritzer Rachel F.1,Leadbetter Edward R.1,Godchaux Walter1

Affiliation:

1. U-2131 Beach Hall, University of Connecticut, Storrs, CT 06269, USA

Abstract

Taurine metabolism by two phototrophically grown purple nonsulfur bacteria enrichment isolates has been examined.Rhodopseudomonas palustris(strain Tau1) grows with taurine as a sole electron donor, sulfur and nitrogen source during photoautotrophic growth.Rhodobacter sphaeroides(strain Tau3) grows on the compound as sole electron donor, sulfur and nitrogen source, and partial carbon source, in the presence of CO2during photoheterotrophic growth. Both organisms utilize an inducible taurine–pyruvate aminotransferase and a sulfoacetaldehyde acetyltransferase. The products of this metabolism are bisulfite and acetyl phosphate. Bisulfite ultimately was oxidized to sulfate, but this was not an adequate source of electrons for photometabolism. Experiments using either [U-14C]taurine or14CO2demonstrated thatRb. sphaeroidesTau3 assimilated the carbon from approximately equimolar amounts of taurine and exogenous CO2. The taurine-carbon assimilation was not diminished by excess non-radioactive bicarbonate. Malate synthase (but not isocitrate lyase) was induced in these taurine-grown cells. It is concluded that assimilation of taurine carbon occurs through an intermediate other than CO2. Similar labelling experiments withRp. palustrisTau1 determined that taurine is utilized only as an electron donor for the reduction of CO2, which contributes all the cell carbon. Photoautotrophic metabolism was confirmed in this organism by the absence of either malate synthase or isocitrate lyase in taurine+CO2-grown cells. Culture collection strains of these two bacteria did not utilize taurine in these fashions.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3