Nitrate reduction and the nitrogen cycle in archaea

Author:

Cabello Purificación1,Roldán M. Dolores2,Moreno-Vivián Conrado2

Affiliation:

1. Departamento de Biología Vegetal, Área de Fisiología Vegetal, Universidad de Córdoba, Spain

2. Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1a planta, Campus Universitario de Rabanales, Universidad de Córdoba, 14071-Córdoba, Spain

Abstract

The nitrogen cycle (N-cycle) in the biosphere, mainly driven by prokaryotes, involves different reductive or oxidative reactions used either for assimilatory purposes or in respiratory processes for energy conservation. As the N-cycle has important agricultural and environmental implications, bacterial nitrogen metabolism has become a major research topic in recent years. Archaea are able to perform different reductive pathways of the N-cycle, including both assimilatory processes, such as nitrate assimilation and N2fixation, and dissimilatory reactions, such as nitrate respiration and denitrification. However, nitrogen metabolism is much less known in archaea than in bacteria. The availability of the complete genome sequences of several members of the eury- and crenarchaeota has enabled new approaches to the understanding of archaeal physiology and biochemistry, including metabolic reactions involving nitrogen compounds. Comparative studies reveal that significant differences exist in the structure and regulation of some enzymes involved in nitrogen metabolism in archaea, giving rise to important conclusions and new perspectives regarding the evolution, function and physiological relevance of the different N-cycle processes. This review discusses the advances that have been made in understanding nitrate reduction and other aspects of the inorganic nitrogen metabolism in archaea.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3